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(This blogpost follows the exposition of Chapter 1 of [1], but in a verbose manner.)
***

Assume a finite irreducible and aperiodic Markov Chain {Xt}t≥0 with transition matrix P . We prove,
by construction, the existence of the stationary distribution π for every such Markov Chain.

We point the reader to this post for the notation used in this blog post. We specially point out
the notation of first return time τ+z for a random walk starting at z ∈ X and the element-wise formulation
of the stationary distribution π for reference.

1 Setup and Overview

Let z ∈ X be any arbitrary state, and define

π̃(y) = Ez[number of visits to y before returning to z]

=

∞∑
t=0

Prz[Xt = y, τ+z > t]

Our argument will broadly be in two steps:

1. We first show that π̃P = π̃.

2. π̃ is clearly not a probability distribution, so we say that π = π̃∑
x∈X π̃(x) is a stationary distribution on

X . We will later show that
∑

x∈X π̃(x) = Ez[τ
+
z ], so the final stationary distribution we construct will

be π = π̃
Ez [τ

+
z ]
.

Step 2 above shows that it is essential first to show that Ez[τ
+
z ] is finite. We show that in Lemma 6.2.
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2 Proof of existence

Proposition 1. (Proof of existence) π = π̃
Ez [τ

+
z ]

is a stationary distribution.

Proof. We begin by showing π̃P = π̃:

π̃P =
∑
x∈X

π̃(x) · P (x, y)

=
∑
x∈X

P (x, y)

∞∑
t=0

Prz[Xt = x, τ+z > t] (from the definition of π̃)

=
∑
x∈X

∞∑
t=0

Prz[Xt = x, τ+z > t] · P (x, y)

=

∞∑
t=0

∑
x∈X

Prz[Xt = x, τ+z > t] · P (x, y) (switching order of summations)

=

∞∑
t=0

∑
x∈X

Prz[Xt = x, τ+z ≥ t+ 1] · P (x, y)

=

∞∑
t=0

∑
x∈X

Prz[Xt = x,Xt+1 = y, τ+z ≥ t+ 1]

=

∞∑
t=0

∑
x∈X

Prz[Xt = x,Xt+1 = y, τ+z ≥ t+ 1]

=

∞∑
t=0

∑
x∈X

Prz[Xt+1 = y, τ+z ≥ t+ 1] · Prz[Xt = x]

=

∞∑
t=0

Prz[Xt+1 = y, τ+z ≥ t+ 1]

( ∑
x∈X

Prz[Xt = x] = 1

)

=

∞∑
t=1

Prz[Xt = y, τ+z ≥ t]

=

∞∑
t=1

Prz[Xt = y, τ+z > t] +

∞∑
t=1

Prz[Xt = y, τ+z = t]

=

( ∞∑
t=0

Prz[Xt = y, τ+z > t]

)
− Prz[X0 = y, τ+z > 0]︸ ︷︷ ︸

(a)

+

∞∑
t=1

Prz[Xt = y, τ+z = t]︸ ︷︷ ︸
(b)

Recall that y is some state in X and in our setup X0 = z. We now consider two cases:

• y = z. In this case the terms (a) and (b) are both equal to 1, so they cancel out.

• y ̸= z. In this case the terms (a) and (b) are both equal to 0. Term (a) is 0 because we know X0 = z
and term (b) is 0 because at time τ+z we know Xt = z, so Prz[Xt = y, τ+z > t] = 0.

Either case simplifies to
∞∑
t=0

Prz[Xt = y, τ+z > t] = π̃(y)

so therefore π̃P = π̃.
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We normalize this with
∑

x∈X π̃(x) to get a probability distribution. Notice that this normalization does
not violate the stationarity condition. This is because scaling π̃ by any scalar c still satisfies the stationarity
condition i.e if π̃P = π̃ and π = c · π̃ then π̃P = π̃ ⇒ πP = π. However, there is only one such c that makes
π a probability distribution.

To complete the proof, it remains to show that
∑

x∈X π̃(x) = Ez[τ
+
z ]. This is shown below:∑

x∈X
π̃(x) =

∑
x∈X

∞∑
t=0

Prz[Xt = x, τ+z > t]

=

∞∑
t=0

∑
x∈X

Prz[Xt = x, τ+z > t] (switching order of summations)

=

∞∑
t=0

∑
x∈X

Prz[τ
+
z > t] · Prz[Xt = x] (independent events)

=

∞∑
t=0

Prz[τ
+
z > t]

= Ez[τ
+
z ]

Since
∑

x∈X π̃(x) = Ez[τ
+
z ] (shown below), π = π̃

Ez [τ
+
z ]

is a stationary distribution.

***
We next argue that the stationary distribution is unique.

3 Proof of Uniqueness

Proposition 2. (Proof of uniqueness) The stationary distribution π of a finite, irreducible and aperiodic
Markov Chain is unique.

Proof. Assume two distributions π1 and π2 that are both stationary distributions over X . Consider a state

x ∈ X that minimizes the ratio π1(x)
π2(x)

. Let us call this minimizing value M . Then,

π1(x) =
∑
y∈X

π1(y) · P (y, x) ≥
∑
y∈X

M · π2(y) · P (y, x) = M · π2(y)

But we know that π1(x) = M · π2(x), so none of the π1(y) ≥ M · π2(y) can be strict inequalities, i.e they
must all be equalities. Therefore

π1(x)

π2(x)
= M for all x ∈ X .

The following expansion shows that M = 1:∑
x∈X

π1(x) = 1 (Sum of a probability distribution)

∑
x∈X

π1(x)

π2(x)
· π2(x) = 1∑

x∈X
M · π2(x) = 1

M
∑
x∈X

π2(x) = 1

M = 1

Since π1(x) = π2(x) for all x ∈ X (i.e π1 = π2), stationary distributions must be unique.
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4 π as the reciprocal of expected first return time

Finally, our work above has left us with this handy identity:

Proposition 3. For the stationary distribution π of a finite irreducible and aperiodic Markov Chain,

π(z) =
1

Ez[τ
+
z ]

Proof. We saw that

π(z) =
π̃(z)

Ez[τ
+
z ]

Since π̃(z) = 1 (because the number of visits a random walk of the chain makes to z before returning to z is
exactly 1 - and this gets logged at the exact moment the random walk returns to z), the proposition follows
immediately.

5 Thinking through the assumptions

In this section we revisit the assumptions we made, and recall why they were needed.
Recall that we have proved the existence and uniqueness of a stationary distribution for a finite, irreducible

and aperiodic Markov Chain.

• finite: What if our chain was not finite? We couldn’t formulate a transition matrix P , which is
necessary for our definition of irreducibility used in Lemma 6.1 makes use of this matrix P . I do not
know if this assumption can be removed in a general setting.

• irreducible: We explicitly need irreducibility for Lemma 6.1 for proof of existence.

More intuitively, consider this example for why a unique stationary distribution does not exist for
reducible chains. Say A and B are disjoint subsets of X and A ∪ B = X . Then a sample path with
X0 ∈ A would never get to B, and therefore could never “learn” the probability distribution of B. The
stationary distribution is the long-term limiting distribution of the chain, and it should not depend
where you start your chain from - but in the reducible case it is clear that the limiting distribution
depends on where the chain starts. If we were to use our proofs above and were to even ignore the
need for Lemma 6.1, we could show the existence of stationary distributions over a subgraph (those
distributions would only have probability mass over either A or B, depending on where X0 is). But
we could not show uniqueness - indeed there would be two different stationary distributions, one each
over A and B.

• aperiodic: Let us consider a periodic chain with two states A and B and X0 = A with period 2. Then,
the probability distribution at all time steps when t is odd is {Pr[Xt = B] = 1,Pr[Xt = A] = 0} and
when t is even is {Pr[Xt = B] = 0,Pr[Xt = A] = 1}. This means that the probability distribution
never converges - we do not have a limiting distribution. Therefore a stationary distribution does not
exist for periodic chains in general.
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6 Appendix

Lemma 6.1. Let Y be a non-negative integer-valued random variable. Then,

E[Y ] =

∞∑
t=0

Pr[Y > t]

Proof. We first notice that

E[Y ] =

∞∑
t=0

t · Pr[Y = t] =

∞∑
t=1

t · Pr[Y = t]

We next notice that this final term can be expanded into a double sum:

∞∑
t=1

t · Pr[Y = t] = Pr[Y = 1]

+ Pr[Y = 2] + Pr[Y = 2]

+ Pr[Y = 3] + Pr[Y = 3] + Pr[Y = 3]

+ Pr[Y = 4] + Pr[Y = 4] + Pr[Y = 4] + Pr[Y = 4]

+ · · ·
· · ·

=

( ∞∑
t=1

Pr[Y = t]

)
+

( ∞∑
t=2

Pr[Y = t]

)
+

( ∞∑
t=3

Pr[Y = t]

)
+ · · ·

=

∞∑
t=1

∞∑
i=t

Pr[Y = i] (1)

Using the fact that Pr[Y > t] =
∑∞

i=t+1 Pr[Y = i], we can expand
∑∞

t=1 t · Pr[Y = t]:

∞∑
t=1

t · Pr[Y = t] =

∞∑
t=0

∞∑
i=t+1

Pr[Y = i]

=

∞∑
t=1

∞∑
i=t

Pr[Y = i] (2)

Combining (1) and (2) completes the proof.

Lemma 6.2. For any states x, y ∈ X of an irreducible Markov Chain,

Ex[τ
+
y ] < ∞

Proof. We first use lemma (6.1) to observe that:

Ex[τ
+
y ] =

∞∑
t=0

Prx[τ
+
y > t]

This motivates trying to bound Prx[τ
+
y > t].

By irreducibility, we know that there exists an integer r > 0 and a real number ε > 0 s.t for any x, y ∈ X ,
there exists a j ≤ r s.t P j(x, y) > ε. In other words. we know there exists an integer j ≤ r s.t the probability
of a random walk starting at x and hitting y in j steps is > ε.

Then, the probability that the random walk does NOT hit y within r steps is < (1− ε), i.e

Prx[τ
+
y > r] < (1− ε)
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Generalizing this argument, we see that for k ≥ 1:

Prx[τ
+
y > kr] < (1− ε)k (3)

We now expand our earlier Ex[τ
+
y ] to into sums of r terms

Ex[τ
+
y ] =

∞∑
t=0

Prx[τ
+
y > t]

=
∑

t∈{0,··· ,r−1}

Prx[τ
+
y > t]

+
∑

t∈{r,··· ,2r−1}

Prx[τ
+
y > t]

+
∑

t∈{2r,··· ,3r−1}

Prx[τ
+
y > t]

+ · · ·

Notice that the first sum in the above expansion can be bounded as∑
t∈{0,··· ,r−1}

Prx[τ
+
y > t] ≤ r · Prx[τ+y > 0]

This is because Prx[τ
+
y > t] is a decreasing function of t, which means that Prx[τ

+
y > 0] is the largest term

in the above sum. Similarly, ∑
t∈{r,··· ,2r−1}

Prx[τ
+
y > t] ≤ r · Prx[τ+y > r]

∑
t∈{2r,··· ,3r−1}

Prx[τ
+
y > t] ≤ r · Prx[τ+y > 2r]

And in general, ∑
t∈{kr,··· ,kr−1}

Prx[τ
+
y > t] ≤ r · Prx[τ+y > kr]

We can use this to get a general upper bound on Ex[τ
+
y ]:

Ex[τ
+
y ] ≤ r ·

∞∑
k=0

Prx[τ
+
y > kr]

≤ r ·
∞∑
k=0

(1− ε)k (using (3))

Since
∑∞

k=0(1− ε)k < ∞, the proof is complete.
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